Sources naturelles
Les champs électriques et magnétiques terrestres sont des champs continus générés par les charges électriques présentes dans l'atmosphère (champ électrique), ou par les courants magmatiques, l'activité solaire et atmosphérique (champ magnétique). Ces champs sont de l'ordre de 100-150 V/m pour le champ électrique atmosphérique (il peut atteindre 20kV/m sous un orage), et environ 40µT pour le champ magnétique. A cela se rajoutent des champs naturels alternatifs de valeur très faible : 1mV/m à 50Hz, 0.013 à 0.017µT avec des pics à 0.5µT lors d'orages magnétiques (champs de fréquence fréquence supérieure à 100kHz).
Le rayonnement solaire et stellaire produit des ondes électromagnétiques, relativement très faibles par rapport au rayonnement artificiel : environ 10pW/cm²
Les cellules vivantes génèrent des champs électriques et magnétiques très faibles : on observe des niveaux de tension de 10 à 100mV, 0.1pT à la surface du corps et dans le cerveau, 50pT dans le coeur
Sources artificielles basse fréquence
Les principales sources artificielles de champ électromagnétique sont les lignes haute tension, d'une fréquence de 50-60 Hz, et les appareils électroménagers utilisant cette tension tels que les plaques à induction.
Sources artificielles dans le domaine des radiofréquences (10 kHz à 300 GHz) [modifier]
Les principales sources de pollution électromagnétiques actuelles sont :
les dispositifs médicaux : radiographie, IRM, médecine nucléaire ;
les dispositifs industriels de mesure, de stérilisation, de production d'électricité ;
les réseaux de télécommunications : publics de téléphonie mobile (GSM, UMTS), privés (analogiques, TETRA, ACROPOL), antennes relais, réseaux informatiques (Wi-Fi, CPL, UWB, WIMAX), radiophoniques, audiovisuels (analogiques, TNT, satellitaires), identification (RFID) ;
l'effet couronne sur les lignes à haute tension ;
les radars (militaires, aériens) ;
les appareils électroménagers et électroniques grand public (fours à micro-ondes, tubes cathodiques des téléviseurs, des ordinateurs).
Depuis quelques années, le niveau de pollution électromagnétique augmente pour les radiofréquences[réf. nécessaire], ceci est dû au développement des communications par radio générant un niveau de pollution sans commune mesure avec les appareils électriques et électroniques qui se plient eux à des normes de compatibilité électromagnétique drastiques[réf. nécessaire] concernant leur niveau d'émission.
Le niveau maximal toléré par les normes pour un ordinateur est d'environ 100 µV/m mesuré à 10 m[2], soit 1 mV/m à 1 m, c'est-à-dire à peu près le niveau que produit une station de base GSM à plus de 100 km.
Effets
Effets ionisants
Article connexe : Rayonnement ionisant.
Un rayonnement électromagnétique est dit ionisant à partir du moment où il possède suffisamment d'énergie pour arracher des électrons aux atomes exposés. C'est le cas pour les rayonnements dans la partie haute du spectre électromagnétique (rayons ultraviolets, rayons X, rayons gamma, rayons cosmiques). Suivant la dose absorbée, les effets peuvent être graves aussi bien pour un organisme biologique que pour un appareillage électronique. L'exposition est en grande partie naturelle (rayonnements cosmiques, sols, éléments radioactifs ingérés), mais aussi d'origine humaine (imagerie médicale, méthodes de mesure industrielles, stérilisation des denrées alimentaires, essais nucléaires, production nucléaire d'électricité).
Le seuil d'ionisation est défini arbitrairement à 10 keV[3]. Le rayonnement ultraviolet, bien que d'énergie relativement faible (750 THz à 30 PHz), peut sous certaines conditions être ionisant.
Effets photochimiques
Article connexe : Photochimie.
Les effets photochimiques sont causés par l'interaction entre la lumière et la matière. Les effets biologiques de ces rayonnements, bien que moins énergétiques que les rayonnements ionisants, peuvent être importants pour les parties exposées : peau (coup de soleil, cancer de la peau, vieillissement), yeux (photokératite, cataracte, brûlures de la rétine ou de la cornée). L'exposition est essentiellement naturelle (soleil), elle peut aussi être artificielle (lampe ultraviolet, laser).
Effets thermiques
Le rayonnement électromagnétique des micro-ondes et des ondes radio a un effet thermique sur la matière, principalement en surface. Ce principe est notamment utilisé dans les fours à micro-ondes. Ces rayonnements sont essentiellement issus de sources artificielles (télécommunications, radars, fours à micro-ondes, transmission d'énergie). Des sources naturelles telles que le bruit cosmique existent également.
Hyper sensibilité électromagnétique
Article connexe : Sensibilité électromagnétique.
La HSEM est un trouble sanitaire généré chez certaines personnes par l'exposition à de faibles niveaux de champ électromagnétique. Suivant les études et les pays, 0 à 10 % de la population serait touchée par ce trouble. Ces patients développent dans 90 % des cas des symptômes bénins et dans 10 % des cas des symptômes handicapants pour la vie quotidienne. Des études en laboratoire n'ont pas permis de démontrer une corrélation biologique entre les champs électromagnétiques et la HSEM. L'OMS préconise une approche environnementale (stress, qualité de l'air, conditions de travail), psychologique et psychiatrique pour le traitement de ce trouble[4].
Effets sur les appareils électroniques
Article connexe : Compatibilité électromagnétique.
Les champs magnétiques et électriques génèrent des courants et des tensions dans les appareils électroniques (de même que dans les organismes vivants). Certains effets sont liés au courant, d'autres à la tension et d'autres à la puissance absorbée, et la fréquence est un paramètre important sur les effets. Ils peuvent provoquer des perturbations, conduisant dans certains cas à un dysfonctionnement (dégradation des performances, erreur de mesure ou blocage).
Dangers et risques des champs électromagnétiques de faible puissance [modifier]
Même si les réglementations en vigueur imposent l'utilisation des appareils électroniques en deçà des effets connus de l'électromagnétisme, tels que l'effet thermique pour les ondes radio et micro-ondes, les dangers d'une exposition pour de faibles puissances ne sont pas à ce jour démontrés scientifiquement. Malgré cela, de nombreuses études de risque ont été lancées afin de déterminer une probabilité de risque sanitaire ou environnemental des champs électromagnétiques. On distingue les études sur le danger électromagnétique effectué en laboratoire des études épidémiologiques.
Dangers biologiques
Certains craignent que l'exposition chronique des individus ou des fœtus à un smog électromagnétique croissant puisse affecter la santé, en raison notamment de l'effet des micro-ondes sur les cellules et d'éventuels effets sur la régulation interne des échanges intra et inter-cellulaires, notamment régulés par des échanges d'ions, qui comme les influx nerveux font intervenir des phénomènes électriques (différences de potentiel d'énergie au travers des parois cellulaires).
Cancers et effets génétiques
Le rapport n°52 de l'OPECST analyse le résultat des études sur le développement de tumeurs chez l'animal suite à l'exposition en laboratoire aux signaux de téléphonie mobile (exposition corps-entier sur une durée longue, 2 ans) comme négatives. L'effet du rayonnement EM sur la mort cellulaire par apoptose s'est révélée négative[6].
Reproduction et développement
Le rapport n°52 de l'OPECST conclut sur l'absence de risques pour la reproduction. Une étude non confirmée indique cependant un risque 6 fois plus élevé de mortalité pour des œufs de poules mis en incubation à proximité d'un téléphone portable en tentative de connexion permanente.
Système nerveux
Le rapport n°52 de l'OPECST cite des études contradictoires sur la perturbation de certaines fonctions cérébrales humaines (temps de réaction, attention, calcul), et animales (manœuvres d'évitement, altération de l'apprentissage). La mémoire et le sommeil ne seraient pas affectés. Des études sur l'animal indiquent une possible « perméabilisation des vaisseaux sanguins du cerveau », pouvant conduire des personnes prédisposées à des crises de migraine[8].
Système cardiovasculaire
D'après le rapport n°52 de l'OPECST, les études sur les effets des téléphones portables sur le système cardiovasculaire humain ou animal (pression artérielle, rythme cardiaque) se sont révélées négatives. Toutefois les personnes équipés d'un stimulateur cardiaque électronique sont concernées par les effets de la pollution électromagnétique sur les équipements électroniques.
Système immunitaire et endocrinien
D'après le rapport n°52 de l'OPECST, le rayonnement des téléphones portables n'a pas d'effet significatif sur ces parties du corps.
Maladies, infections
En juillet 2007, une étude de l'Imperial Center for Environmental Policy[9] suggère une influence des champs électriques sur les risques de maladies respiratoires (asthme) ou infectieuses (allergènes, bactériennes ou virales). Les chercheurs pensent qu'un champ électrique pourrait favoriser la déposition des microparticules de l'air ambiant dans les poumons et dans les cheveux par effet électrostatique. Cette étude est en attente de validation, notamment sur les organismes humains.
Risques sanitaires
Juin 2001 : L'Organisation mondiale de la santé (WHO), en charge de la coordination mondiale des recherches sur les effets des champs électromagnétiques (EMF), publie en juin 2001 une évaluation de son agence CIRC, classifiant les champs électromagnétiques de très basses fréquences comme « peut-être cancérogènes pour l'homme » (groupe 2B). Les spécialistes se sont basés sur des études épidémiologiques indiquant un taux de 1.7 à 2 fois plus élevé de leucémie de l'enfant dans le cas d'exposition longue à un champ magnétique moyen supérieur à un seuil de 0,3 à 0,4 µT, sans pour autant exclure la possibilité d'autres explications.
En novembre 2002, l'Office parlementaire d'évaluation des choix scientifiques et technologiques (OPECST) publie le rapport n° 52 sur l'incidence éventuelle de la téléphonie mobile sur la santé. Concernant le risque accru de cancer par les téléphones mobiles, le rapport indique que huit études n'ont pas eu de résultats significatifs, et que des études du groupe Hardell ont eu un résultat positif, mais sont sujettes à controverse de par leur méthodologie (p. 32 du rapport). Concernant le risque accru de cancer par les stations de base, les études sont considérées comme délicates du fait de nombreux paramètres en jeu, des études en Grande-Bretagne et en Australie ont eu un résultat positif sur le risque de leucémies des enfants à proximité de stations de télévision et de radio, mais non reproductibles sur toutes les stations. Le rapport conclut à l'absence de preuves.
Le Centre International de Recherche sur le Cancer (CIRC) est en charge d'une étude globale Interphone sur le développement de tumeurs chez les personnes ayant utilisé un téléphone portable intensivement durant les 5 à 10 dernières années Les premiers résultats (2004-2006) ne concluent pas à un lien entre le téléphone portable et le développement de gliomes Un doute a cependant été émis concernant les résultats à long terme (> 10 ans)
Au printemps 2003 puis en juin 2007, l'Office fédéral suisse de l'environnement (OFEV, ex OFEFP) publie un état des lieux des recherches menées sur les rayonnements non ionisants à haute fréquence de faible intensité Le rapport se base sur 200 études scientifiques, et classifie les effets biologiques suivant leur existence et leur importance pour la santé. L'analyse montre une insuffisance des données scientifiques dans le domaine des intensités faibles. Toutefois des résultats provisoires se dégagent : la possibilité d'un risque accru de tumeurs au cerveau par l'utilisation de téléphones mobiles (puissance de 20 mW-2 W/kg), bien qu'aucune étude concluante ne concerne les stations de base de téléphonie mobile, la possibilité d'une modification passagère ou durable du matériel génétique de certaines cellules (puissance de 0,3 W/kg, conséquences inconnues pour le fonctionnement des cellules). L'analyse insiste sur les problèmes inhérents aux études épidémiologiques lancées jusqu'en 2007 : absence d'établissement d'un lien causal entre les effets observés et les rayonnements EM, choix des échantillons de la population et des méthodes de recherche, pas d'évaluation de l'exposition quotidienne de la population, peu d'études à long terme. La conclusion de l'étude indique qu'aucun élément scientifique ne peut remettre en cause les valeurs limites de l'ICNIRP, ni que ces valeurs constituent une protection suffisante pour la population. L'OFEV préconise le maintien du principe de précaution et d'accentuer la recherche.
Risques liés aux dysfonctionnements d'appareils électroniques [modifier]
La pollution électromagnétique a des effets sur le fonctionnement des appareils électroniques. Des règles et techniques permettent d'assurer le bon fonctionnement des appareils dans leur milieu : la compatibilité électromagnétique.
Ce risque est mentionné par des organismes officiels depuis novembre 2006 en France : la fondation Santé et Radiofréquence, et par les parlementaires de l'OPECST dans un rapport de juillet 2006.
Utiliser les appareils dans un environnement dépassant leur niveau d'immunité fait encourir un grand risque.
Les risques environnementaux sur la faune
L'épidémiologiste américain George Carlo, membre de l'initiative Safe Wireless Initiative et d'autres, craignent que les champs électromagnétiques artificiels soient - pour partie au moins - à l'origine de la disparition des abeilles constatée simultanément sur plusieurs continents et depuis quelques années (d'autres hypothèses, qui ne sont pas incompatibles avec celle-ci ont été évoquées ; pesticides, virus, pollens de plantes OGM sécrétant du Bt qui affecterait l'immunité des abeilles, etc.). Le « syndrome d'effondrement des colonies d'abeilles » semble correspondre à une incapacité des abeilles à retrouver leur colonie et non directement lié à l'importance de l'exposition à des pesticides. Il s'est développé au même rythme que celui de la téléphonie mobile. L'expérience d'un apiculteur suisse révèlerait que la population des ruches aurait été décimée après une exposition de 12 colonies d'abeilles à une distance de 200 m d'une antenne relais de l'entreprise de téléfonie mobile Swisscom. La moitié des abeilles présentes au début de l'expérience seraient mortes. Une étude du Centre Agroscope de Posieux mentionne l'absence de lien entre la mort des abeilles et les antennes relais en général..
L'électromagnétisme est une branche de la physique qui fournit un cadre très général d'étude des phénomènes électriques et magnétiques dans leur synthèse du champ électromagnétique, produit par les sources du champ que sont les charges et leurs mouvements. Ce champ produit agit à son tour sur les charges.
Les équations de Maxwell déterminent le champ électromagnétique à partir des sources, des charges et des courants. Le champ exerce quant à lui sur la matière une action mécanique, la force de Lorentz, qui explique l'interaction électromagnétique.
L'interaction électromagnétique est une des quatre interactions fondamentales. Elle explique le comportement des objets de l'échelle atomique (comportement des électrons, des atomes et des molécules).
Historique [modifier]
L'électromagnétisme est né de l'unification par James Maxwell de théories antérieures, comme l'électrostatique, l'électrocinétique ou la magnétostatique. Cette théorie unifiée explique entre autres le comportement des charges et courants électriques, des aimants, ou des ondes électromagnétiques, telles la lumière ou les ondes radio.
Le concept fondamental de la théorie est la notion de champ électromagnétique, entité qui englobe le champ électrique et le champ magnétique, qui se réduit dans certains cas particuliers :
Les charges sont immobiles : on est alors en électrostatique avec des champs électriques statiques.
La densité de charge est nulle et les courants sont constants dans le temps : on est en magnétostatique avec un champ magnétique statique.
Lorsque les courants sont relativement faibles et variables et se déplacent dans des conducteurs isolés dits fils électriques, les champs magnétiques produits sont très localisés dans des éléments dits bobines d'auto-inductance, self, transformateurs ou générateurs et les densités de charges non nulles dans des condensateurs ou batteries génératrices de courants : on est alors en électrocinétique ; on y distingue les courants faibles (électronique) et les courants forts (électrotechnique). Il n'y a pas de champ à l'extérieur du circuit. On étudie des circuits électriques et l'on y distingue les basses fréquences et les hautes fréquences. L'électronique a fait des progrès énormes à partir du développement des semi-conducteurs qui sont maintenant utilisés pour faire des circuits intégrés de plus en plus miniaturisés et comportant des puces électroniques ou microprocesseurs.
Les hautes fréquences atteintes par les circuits résonnants électriques ont permis, à l'aide d'antennes, de créer des ondes électromagnétiques éliminant ainsi les fils de connexions. L'émission, la propagation et la réception de ces ondes qui sont régies par les équations de Maxwell constituent l'électromagnétisme.
L'interaction électromagnétique présentée en termes fondamentaux de la physique théorique ou physique fondamentale s'appelle l'électrodynamique ; si on tient compte de l'aspect quantique, c'est l'électrodynamique quantique relativiste.
Ce formalisme est semblable à celui de la mécanique quantique : la résolution de l'équation de Schrödinger, ou de sa version relativiste (l'équation de Dirac), donne la probabilité de présence de l'électron et la solution de l'équation de Maxwell, longtemps interprétée comme une onde, est à la base une équation de probabilité pour le photon, qui n'a ni charge ni masse et qui ne se déplace qu'à la vitesse de la lumière dans le vide.
Différents domaines
L’électromagnétisme englobe l'électricité, regroupant les phénomènes électriques et magnétiques suivants :
l’électrostatique : les systèmes de charges électriques à l’équilibre ;
la magnétostatique : les phénomènes créés par un courant électrique stationnaire ;
l'induction magnétique : les phénomènes magnétiques créés par un courant électrique variable ;
l'électrodynamique : les interactions dynamiques entre courants électriques :
l’électronique : l'utilisation de tension, de courants généralement faibles et de phénomènes quantiques. L’électronique sert essentiellement pour le transfert, le contrôle et le traitement de l’information ;
l’électrocinétique ou l'électrotechnique : l’utilisation de tensions, de courants moyens à élevés pour des applications domestiques et industrielles (chauffage, transformateurs, moteurs électriques, électrolyse, électroménager, distribution, automatisation…) ;
la radioélectricité : les transmissions par ondes électromagnétiques.